dJ. Org. Chem. 1981, 46, 4107-4108 4107

1,3-cyclopentanediol, 16326-98-0; PhP, 603-35-0.

Edward L. Clennan,* Poh Choo Heah

Department of Chemistry
University of Wyoming
University Station
Laramie, Wyoming 82071
Received May 26, 1981

Asymmetric Synthesis of y-Lactones. A Facile
Synthesis of the Sex Pheromone of the Japanese
Beetle

Summary: The sex pheromone of the Japanese beetle,
(R)-(-)-(Z)-5-tetradecen-4-olide, has been prepared in es-
sentially 100% optical purity by using the asymmetric
reducing agent B-3-pinanyl-9-borabicyclo[3.3.1]nonane to
introduce chirality.

Sir: Chirality often plays a critical role in the biological
activity of molecules. This phenomenon is particularly
important for the sex pheromone produced by the female
Japanese beetle, Popillia japonica, which has been iden-
tified as (R)-(~)-(Z)-5-tetradecen-4-olide. As little as 1%
of the S,Z isomer can significantly reduce the response of
male beetles to the R,Z isomer. The R and S enantiomers
of the pheromone were originally prepared from glutamic
acid.! Unfortunately, only the more expensive R-(-)-
glutamic acid leads to the correct enantiomer. More re-
cently the pheromone has been prepared by resolution?
and by asymmetric reduction® of an intermediate. How-
ever, these methods do not all give product of high optical
purity.* Since the pheromone can be used to survey and
control this major pest, effective methods for its synthesis
would be useful.

We recently reported a route to y-lactones through the
asymmetric reduction of 4-oxo-2-alkynoates.> Application
of this method to a synthesis of the Japanese beetle
pheromone was complicated by the length of the synthesis
and the need to manipulate sensitive intermediates. We
now report a short synthesis which provides pheromone
of essentially 100% optical purity.

The procedure is outlined in Scheme I. The propargyl
ketone was prepared in 67% yield from 1-decyne and the
acid chloride® by using the procedure of Normant.” By
using the copper(I) bromide-methyl sulfide compiex® the
yield of the propargyl ketone could be increased to 85%.
The chiral center was then introduced to asymmetric re-
duction of the propargyl ketone with B-3-pinanyl-9-bora-
bicyclo[3.3.1]nonane (Alpine-borane).® The reagent from
(+)-a-pinene produced the required R enantiomer in
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70~75% chemical yield. Commercially available (+)-a-
pinene (92% optical purity) gave product of 85-90% en-
antiomeric excess as judged by the use of a chiral NMR
shift reagent. Using optically-pure (+)-a-pinene!® resulted
in a product in which none of the minor enantiomer could
be detected by NMR (less than 3% S probably could not
be detected). The crude ester was then saponified!! and
after neutralization the hydroxy acid was distilled [Ku-
gelrohr, 140 °C (pot), 0.01 mm)] to give the acetylenic
lactone.’? Reduction of the acetylene gave the pheromone
in 80-90% overall yield from the ester. The product was
eluted through a short silica gel column with methylene
chloride/hexane/ethyl acetate (150/50/5). The a-pinene
of 92% optical purity gave a final product of 78-88%
optical purity, while optically-pure a-pinene gave product
of 97% optical purity.!

The limiting factor in obtaining product of high optical
purity with the Alpine-borane reagent is usually the optical
purity of the a-pinene. High optical purity a-pinene is
available.’® However, the purification of the a-pinene
requires extra steps. We therefore sought methods to
enrich the desired enantiomer. All intermediates were oils
and could not be crystallized. However, we found that the
4-hydroxy acid could be crystallized from acetonitrile as
a cyclohexylamine salt'® (mp 94~85 °C). After two re-
crystallizations, conversion to the pheromone gave material
with a rotation of [a]%p —69.93° (9.84, CHCl,) [lit. [«]%p
-69.6 (5.0, CHCly);! [a]®p -70.0 (6.4, CHCl;)?], which was
spectroscopically indentical with the natural material.

We have previously shown that Alpine-borane is an
effective asymmetric reducing agent for a variety of pro-
pargyl ketones. Thus by using different acetylenes it
should be possible to produce a variety of optically-active
v-lactones by this route. The generality of recrystallizing
the 4-hydroxy acids to optically pure products remains to
be explored. These vinyl y-lactones are of considerable
interest in synthetic chemistry because they may be used
to introduce chirality in acyclic systems through alkylations
with organocopper or palladium reagents.!t
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Dipole Stabilization of a-Heteroatom Carbanions:
Theory and Experiment

Summary: The results of ab initio SCF calculations verify
dipole stabilization in the carbanions formed by loss of a
proton from the methyl groups of methyl formate and
N-methylformamide, but differences between theory for
the free anions and experiment is attributed to the effect
of lithium ion complexation.

Sir: Carbanions 1 adjacent to the oxygen of an ester (Y
= () or to the nitrogen of an amide (Y = NR) are easily
prepared and provide synthetically useful reagents.! Such
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anions have been termed “dipole stabilized”.!* While it
is intuitively reasonable that carbanionic centers will be
favorably influenced by adjacent dipoles, ab initio SCF
calculations?® now establish this stabilization to be of
substantial magnitude. We also report parallel experi-
mental work which tests the predictions from theory.
A number of conformations of neutral species 2-6 and
the derived anions 2A-6A were studied theoretically.
Energies are summarized in Tables I and II. The preferred
geometries are represented in Figure 1; those for 2A and
4A have already been discussed.* The anionic centers in
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Figure 1. Preferred geometries of species studied theoretically.
The anti isomers of 3A, BA, and 6A are favored over the syn
isomers by ~9 kcal/mol (4-31G//STO-3G).
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3A, 5A, and 6A are distinctly pyramidal with the lone pair
in the plane of the molecule oriented as shown.® That is,
rotations around the O—-CH, bond in anti-3A or syn-3A
are unfavorable: 90° rotation of anti-3A requires 6.6
kcal/mol at the 4-31G//STO-3G level. Furthermore, 3A,
5A, and 6A prefer the anti over the syn geometry by about
9 keal/mol® even though the parent ester 3 and amide 5
favor the syn stereochemistry (by 7.6 and 1.4 kcal/mol,
respectively).”® Rotations around the CO-O or CO-N
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